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A B S T R A C T

Many species of conservation interest exist solely or largely in isolated populations. Ideally, prioritization of
management actions among such populations would be guided by quantitative estimates of extinction risk, but
conventional methods of demographic population viability analysis (PVA) model each population separately and
require temporally extensive datasets that are rarely available in practice. We introduce a general class of sta-
tistical PVA that can be applied to many populations at once, which we term multiple population viability
analysis or MPVA. The approach combines models of abundance at multiple spatial locations with temporal
models of population dynamics, effectively borrowing information from more data-rich populations to inform
inferences for data-poor populations. Covariates are used to explain population variability in space and time.
Using Bayesian analysis, we illustrate the method with a dataset of Lahontan cutthroat trout (Oncorhynchus
clarkii henshawi) observations that previously had been analyzed with conventional PVA. We find that MPVA
predictions are similar in bias and higher in precision than predictions from simple PVA models that treat each
population individually; moreover, the use of covariates in MPVA allows for predictions in minimally-sampled
and unsampled populations. The basic MPVA model can be extended in multiple ways, such as by linking to a
sampling and observation model to provide a full accounting of uncertainty. We conclude that the approach has
great potential to expand the use of PVA for species that exist in multiple, isolated populations.

1. Introduction

Perhaps the single most interesting and important question in con-
servation biology is: “why do some small populations decline to ex-
tinction while others persist?” If this question could be reliably ad-
dressed for species of interest, managers would have the information
necessary to strategically focus actions on populations most at risk.
Conservation theory and empirical observations have produced rules of
thumb on the minimum number of individuals (Frankham et al., 2014;
Franklin, 1980; Traill et al., 2007) or minimum habitat extent (e.g.,
Hilderbrand and Kershner, 2000; Robbins et al., 1989) required for a
viable population, but there are numerous examples of populations that
defy these rules (Peterson et al., 2014; Shoemaker et al., 2013).
Smallness alone is an insufficient predictor of risk; it is also critical to
understand the factors that correlate with population declines and
stochasticity, and thus extinction (Caughley, 1994).

A holistic understanding of the causes of population declines, and

ultimately the processes contributing to extinction of small populations,
is particularly important for species in highly fragmented habitats
(Fagan and Holmes, 2006; Gilpin and Soule, 1986) — a category that
covers many imperiled species of conservation interest. Examples in-
clude the island fox (Urocyon littoralis) in the Channel Islands
(Kohlmann et al., 2005), “mountain island” species such as pika
(Ochotona spp.; Beever et al., 2003), and water-associated species in
arid landscapes (Kodric-Brown and Brown, 1993). For such species, the
relative viability of individual populations is of fundamental concern to
managers who must make hard decisions regarding the allocation of
limited resources to prevent population and species extinctions. Ideally,
such decisions would be guided by data-driven estimates of extinction
probabilities under alternative scenarios of management action (or in-
action) and varying environmental conditions, such as future climates.

Population viability analysis (PVA) is a class of analytical ap-
proaches that yields probabilistic estimates of population viability (or
extinction) over specified time horizons (Beissinger and McCullough,
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2002; Morris and Doak, 2002). However, traditional PVAs require
temporally extensive demographic data (e.g. survival, reproduction,
and maturation rates), and have generally been limited to populations
that have been the focus of long-term monitoring programs. Such da-
tasets are unusual for imperiled species, and it is particularly rare to
have long-term data for every population of interest, which is required
to evaluate relative risk and to target management actions effectively.
Some traditional PVA approaches also require data from marked and
tracked individuals; such data are generally expensive to collect.

One alternative is to use a species distribution modeling approach
(Elith and Leathwick, 2009) or abundance modeling approach (e.g.,
Royle, 2004) to identify spatial or spatiotemporal environmental cov-
ariates to explain presence or abundance. These covariates allow pro-
jection of occurrence or abundance across broad geographies and under
alternative management and climate conditions. However, they gen-
erally do not consider temporal population dynamics or density de-
pendence, and are often made at the scale of the sampling unit rather
than the full population. Thus, as typically employed they cannot
provide estimates of population viability.

2. A multiple population viability model

We propose that statistical methods of modeling presences or
abundances in space can be married with statistical time-series models
of populations to provide a data-driven approach to population viability
analysis that can be applied to many populations simultaneously. The
method has four defining characteristics:

1. Some population parameters are shared among populations. One or
more of these parameters are influenced by covariates that vary in
space and in time (or both) so they can be used to describe spatial
differences among populations as well as temporal fluctuations
within populations.

2. Populations are modeled as autoregressive, meaning that abundance
at one point in time depends in part on the abundance in a previous
time step, as in a traditional PVA. A mechanism to account for
density dependence should be included in most cases.

3. Modeling is at the scale of the full population, not the sampling unit.
Counts must either be scaled to the full population before modeling,
or (better yet) scaled to the full population during modeling via an
observation model and a sampling model directly linked to a process
model.

4. As a statistical method it is driven by empirical data, which sets it
apart from simulation-based methods that usually rely on a mix of
literature values and expert opinion.

Previously introduced methodologies have incorporated some of
these characteristics, but we know of no published approaches with all
four. Clark and Bjørnstad (2004) introduced Bayesian methods to fit
flexible state-space time series models that could account for hidden
states, missing values, observation errors and other complexities, but
applied them to only one population at a time. Zipkin et al. (2014) used
a Bayesian modeling framework to extend the open N-mixture model
(Dail and Madsen, 2011) to account for stage-structured time series
population data. Kanno et al. (2015) further developed this to model
abundance at multiple locations with density dependence as a function
of climate covariates, but analysis was at the scale of the sampling unit
rather than full populations, and the focus was not on viability.

We build on these antecedents to introduce a simple Bayesian
multiple population viability analysis process model, or MPVA. While
previous studies (Berliner, 1996; Clark and Bjørnstad, 2004; Staples
et al., 2004; Zipkin et al., 2014) have emphasized the importance of
linking population models to observation models to remove bias asso-
ciated with incomplete detection, for the sake of simple exposition we
focus here on the process model. We discuss methods for linking to
observation and sampling models later.

To develop the model we assume a dataset collected from multiple
isolated populations p, at least some of which have been sampled at
sequential time steps t. Because our focus is on the process model, we
assume that the population estimate for each population at each sam-
pling occasion Npt is known without error. We assume at least one
covariate Xpt with a value corresponding to each sampling occasion. A
traditional way to analyze such a dataset might be to use Poisson re-
gression in a generalized linear modeling framework:

N Poisson N~ ( )pt pt (1)

= +log N β β X( )pt pt0 1 (2)

Such a model would probably not meet assumptions, as repeat
samples of individual populations would not be independent. This
could be corrected by including a random intercept for population
identity, making it a multilevel model (Gelman and Hill, 2007;
Raudenbush and Bryk, 2002). Alternatively, one could make the model
explicitly autoregressive by making the population at the current time
step dependent on the previous time step:

= + +−log N log N β β X( ) ( )pt pt pt1 0 1 (3)

The above applies to Npt-1 > 0, as the outcome Npt = 0 is de-
terministic when Npt-1 = 0; this caveat also applies to all subsequent
forms of this equation. Eq. (3) is simply an exponential growth model
where the intrinsic population growth rate r is a linear function of
covariate X. It can be rewritten as:

= +−log N log N r( ) ( )pt pt pt1 (4)

= +r β β Xpt pt0 1 (5)

While valid, the model lacks a term for density dependence, which
means that populations are unbounded and could grow exponentially to
infinity in projections.

One can solve this with a simple density dependence term:

⎜ ⎟= + ⎛
⎝

− ⎞
⎠

−
−log N log N r

N
K

( ) ( ) 1pt pt pt
pt

p
1

1

(6)

This is now a form of the Ricker model (Ricker, 1954) in which the
realized population growth rate approaches the intrinsic growth rate rpt
when populations are small, but declines as populations approach
carrying capacity Kp. We chose the Ricker model because it is simple, it
has been widely used in both theoretical and applied ecology (May,
1974; Clark, 2007; Morris and Doak, 2002; Dail and Madsen, 2011;
Kanno et al., 2015), and it has a linear form amenable to covariates on
rates of recruitment and density-dependent mortality (Hobbs and
Hooten, 2015). However, many other formulations are possible; the
Gompertz model in particular has been shown to have desirable prop-
erties (Dennis and Taper, 1994). In our example Kp is indexed by po-
pulation, indicating that each population has a unique carrying capa-
city that is constant through time. Carrying capacity could be allowed
to vary temporally as a function of covariates, but we have found that
when both r and K are allowed to vary spatio-temporally, the model can
suffer identifiability issues (i.e. there are multiple optima).

A solution is to reformulate the Ricker equation using the term phi
(φ) to represent r/K, the strength of density dependence (Hobbs and
Hooten, 2015). One can include spatio-temporal covariates on both r
and φ:

= + −− −log N log N r φ N( ) ( )pt pt pt pt pt1 1 (7)

= +r β β Xpt pt0 1 (8)

= +φ γ γ Xpt pt0 1 (9)

In this formulation, φ represents the reduction in population growth
rate associated with adding a single individual to last year's population,
and will be a small positive number—generally much< 1 but> 0. The
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prior can be specified in various ways—as a beta, a lognormal, a
gamma, or as a logit-normal (we use the latter in our example below).
One problem, though, is that the value of φ is likely to be much less for
a population occupying 1000 km2 than a population occupying 10 km2.
To accommodate multiple populations with varying spatial extents, we
use population density instead of abundance as our covariate for den-
sity-dependence:

= + −−
−log N log N r φ

N
A

( ) ( )pt pt pt pt
pt

p
1

1

(10)

where Ap is the area available to population p. With this adjustment, φ
is now the change in growth rate associated with adding one individual
per unit area to last year's population, which is comparable among po-
pulations occupying different spatial extents. Traditional demographic
models (e.g. logistic or Ricker models) do not need to make this ad-
justment because they are only evaluating a single population at a time,
but it is critical for MPVA.

At this stage the only error term in the model is Poisson, which can
be interpreted as demographic stochasticity when incorporated into a
Ricker model (Melbourne and Hastings, 2008). Residual environmental
stochasticity can be added as normal error (note that throughout this
article we specify the normal distribution with mean and variance, σ2,
which is equivalent to the inverse of precision, τ). We specify normal
error because it is a traditional choice for overdispersion in Poisson
regression (Kery and Schaub, 2012), but many other specifications are
possible (note that since the normal error is applied to the logged
abundance, this is lognormal error on the original scale).

N Poisson N~ ( )pt pt (11)

= + − +−
−log N log N r φ

N
A

ε( ) ( )pt pt pt pt
pt

p
pt1

1

(12)

= +r β β Xpt pt0 1 (13)

= +φ γ γ Xpt pt0 1 (14)

ε normal σ OR ε normal σ~ (0, ) ~ (0, ).pt pt i
2 2 (15)

The stochasticity term σ2 could be assumed to be constant among
populations (as shown here) or to vary at the population level σi2 (i.e.,
be a population-level random effect). It is also possible to include po-
pulation-level random effects on r and φ in lieu of (or in addition to)
covariates. This allows populations to differ in r and φ in unexplained
ways, although in the absence of covariates estimates of these terms for
unsampled or minimally sampled populations will be noisy estimates
around the mean.

This model can be fit using freely available Bayesian software such
as WinBUGS (Lunn et al., 2000) or JAGS (Plummer, 2003). Prediction
of population viability can be made concurrent with model fitting by
including additional years of unknown future abundance (specified as
“NA”) at the end of the input file for N. An alternative to making pre-
dictions within the Bayesian software is to reconstruct the model in R
(or other programming language) with the parameter estimates sam-
pled from the posterior densities produced by the model fitting process.
Typically tens or hundreds of thousands of simulations are run, and
viability is calculated as one minus the frequency of extinction. As in
traditional PVA, it is possible to set a quasi-extinction threshold, or one
can simulate the number of females and declare an extinction if the
population reaches zero females or zero males.

A critical step is selecting appropriate covariates for r and φ. As for
any model, the covariates should reflect the best scientific under-
standing of the species' biology and its relationship with the environ-
ment. Covariates on r should include variables that affect growth rate
(recruitment) as well as those that affect mortality. Lagged effects (e.g.,
temperature in a prior year) may make sense for modeling recruitment,
particularly when N excludes young/juvenile stages. Covariates on φ

should include those hypothesized to affect carrying capacity, and po-
tentially other covariates. In practice it can take some hard thinking to
determine which covariates should be placed on each term.

3. Application to Lahontan cutthroat trout

We illustrate the method with Lahontan cutthroat trout
(Oncorhynchus clarkii henshawi), a fish listed as threatened under the
U.S. Endangered Species Act (Coffin and Cowan, 1995). The species is
endemic to the endorheic Lahontan basin, which encompasses a large
portion of northwest Great Basin desert and eastern flanks of the Sierra
Nevada Range in western North America (Behnke, 1992). Most extant
populations of Lahontan cutthroat trout occur within small isolated
streams or stream networks (Neville et al., 2016; Neville et al., 2006)
that are fragmented due to stream intermittency and habitat suitability
related to climatic factors (Dunham et al., 1999; Warren et al., 2014),
and further constrained by impacts of human land and water use and
interactions with nonnative trout (Coffin and Cowan, 1995). As the
climate in the region warms, regional shifts in the probability of
drought (Diffenbaugh et al., 2015) and associated wildfires (Westerling,
2016) are also on the rise, leading to increased threats to native fishes
including Lahontan cutthroat trout (Dunham et al., 2003a; Schultz
et al., 2017).

Previously, Peacock and Dochtermann (2012) conducted traditional
population viability analyses of 10 isolated and three interconnected
populations of Lahontan cutthroat trout in northeastern Nevada
(Fig. 1). Each population had been sampled annually for five to ten
years between 1993 and 2002. Fish were sampled at 6 to 30 sites per
population using multiple-pass removal sampling with a backpack
electrofisher. Fish of age zero were identified based on length-fre-
quency histograms and excluded from analysis. Abundance of fish age
one and greater was estimated using the Zippin estimator (Zippin,
1958) in the program MicroFish (van Deventer, 1989), averaged across
sites, and then extrapolated to the full population extent for each
stream. They used these abundances to calculate population growth
rates and 100-year extinction probabilities for each population, based
on a quasi-extinction threshold of 50 individuals. They summarized
relative extinction probability for each population as low, medium or
high using 100-yr extinction probabilities of< 0.5, 0.5–0.9, and> 0.9,
respectively.

We used the dataset of Peacock and Dochtermann (Table 1; yearly
data are shown in Table A1 in the Supplementary Material) to construct
a MPVA model for Lahontan cutthroat trout. To illustrate how the
model allows for viability estimates at sites with little data, we added
two populations that had been sampled in only one or two years during
the same 10-year period by the Nevada Department of Wildlife: Toe
Jam Creek and Fourth Boulder Creek. We modeled the three inter-
connected populations (East Marys, West Marys, Marys River Basin) as
if they were isolated, since our purpose here was to provide an illus-
tration of the method. For population area, we used the occupied
lengths reported by Peacock and Dochtermann. For Toe Jam Creek and
Fourth Boulder Creek we used the “conservation population” delinea-
tions of the US Fish and Wildlife Service 2009 review of the sub-species'
status (United States Fish and Wildlife Service (USFWS), 2009).

We specified two very similar MPVA models that differed only in
how they treat residual stochasticity (σ2). The first (MPVA1), shown
here, models σ2 as a random effect, which means that each population's
stochasticity is drawn from a common distribution, constraining the
degree to which they can differ.

N Poisson N~ ( )pt pt

= + − +−
−log N log N r φ

N
A

ε( ) ( )pt pt pt p
pt

p
pt1

1

= + + +r β β temp β spring β springlagpt pt pt pt0 1 2 3
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−ε σ σ α β logit φ σ~normal (0, ); ~gamma ( , ); ( )~normal (μ, ¨ );pt p p p
2 2 2

− − σ α β

β

μ~uniform( 9, 3); ¨ ~uniform(0,100); , ~gamma (.001,.

001); ~normal (0, 100)

2

0,1,2,3

The second (MPVA2) is the same except that σ2 is estimated in-
dependently for each population, with vague priors. Both rely the
Ricker model of density dependence, which is a common choice for
modeling salmonids (e.g., Elliott, 1985; Myers et al., 1998). For sim-
plicity, we included covariates on r only, and assumed φwas distinct for
each population using a random effect with mean and variance esti-
mated from the data. We used three spatio-temporally-varying climate-
related covariates on rpt: stream temperature (temp), spring flow mag-
nitude (spring) and spring flow magnitude in the previous year

(springlag). Mean August temperature was extracted from the NorWeST
dataset (Isaak et al., 2016). We hypothesized that excessively high
temperatures in this desert environment could lead to mortality
(Dunham et al., 2003b). Spring flow magnitude was calculated as the
annual maximum 7-day flow during the season of spring runoff
(March–July) for each population's most-downstream segment, using
outputs from the Variable Infiltration Capacity macroscale hydrologic
model run by the University of Washington (https://cig.uw.edu/
datasets/wus/) and downscaled to NHDPlus stream segments using
the methods of Wenger et al. (2010). We included flow magnitude for
the current year as well as flow magnitude with a one-year lag, as
earlier modeling efforts using this dataset by Ray et al. (2007) sug-
gested that high flows in the current year may cause mortality (reduced
growth rate from last year) but that high flows in the previous year may

Fig. 1. Eastern Lahontan Basin in northern Nevada, U.S.A., and location of study populations of Lahontan cutthroat trout (“LCT”).
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increase recruitment to adulthood in the following year (increasing
growth rate). We standardized covariates by subtracting the mean and
dividing by the standard deviation.

To compare MPVA to traditional PVA methods, we additionally
constructed two simplified models. The first (“Simple1”) is equivalent
to modeling each population individually, with density dependence:

N Poisson N~ ( )pt pt

= + − +− −log N log N r φ N ε( ) ( )pt pt p p pt pt1 1

ε σ φ r σ~normal (0, ); ~uniform (0, 1); ~normal(0, 1E4);

~uniform (0,100)

pt p p
2 2

The second version (“Simple2”) is identical but removes the term for
density dependence (φiNpt−1). There are no covariates in either model
(covariates are rarely used in traditional count-based PVA, nor could
their coefficients be readily estimated without long time series, since
each population is modeled independently). Despite the names,
Simple1 and Simple2 both include more parameters than MPVA1, since
each population is modeled individually (Table 2). When applied to 13
populations, Simple1 has 27 parameters and Simple2 has 14 para-
meters, whereas MPVA1 has 7 (although three of these represent
random effects, which can have an effective number of parameters
greater than their nominal value; Bolker et al., 2009). MPVA2 has 18
parameters. Note that because each population is independent, the
models cannot be run for Toe Jam and Fourth Boulder, which were only
sampled once (Toe Jam) or twice (Fourth Boulder and therefore had
insufficient time series to support model parameterization. The essen-
tial characteristics of all four models are shown in Table 2.

We implemented each model in the Bayesian software JAGS
(Plummer, 2003). We specified vague priors for all stochastic para-
meters and ran the model for the 10-year period for which we had data
(1993–2002). We used five chains with a 10,000 iteration burn-in
period followed by 250,000 sampling iterations, using a thinning factor
of 25, resulting in a net 50,000 samples for estimating posterior

distributions. We conducted forecasts concurrent with model fitting by
adding an additional 100 years, with covariates for each year randomly
sampled from the 10 years of historical covariate data (note that since
the forecasts are concurrent with model fitting, there are a net 50,000
samples used for prediction). We started the forecasting simulations for
each population using the final year's observed value for that popula-
tion. In every year we randomly estimated the number of females based
on a 1:1 sex ratio by drawing from a binomial distribution (p = 0.5,
N = number of individuals) and declared a population to be extinct if
that number dropped to zero or was equal to the total number of in-
dividuals (i.e., no females or all females). This approach could over-
estimate extinction, however, because trout have overlapping genera-
tions and a population potentially could be maintained with no adults
at all, as long as there are still juveniles that can survive into adulthood.
For MPVA2 we could not forecast Toe Jam and Fourth Boulder con-
current with model fitting, so we made post-hoc predictions by re-
constructing the forecast code in R and drawing from the posterior
parameter estimates. The full models and details on all settings are
provided in supplementary material. We compared model in-sample
performance on the basis of absolute error, bias, and precision.

4. Results

All models passed Gelman-Ruben convergence diagnostics. Of the
covariates we tested with MPVA, we found no relationship with tem-
perature (perhaps because the sites do not span a sufficient gradient;
see Discussion), a possible weak negative response to spring flow, and a
positive response to spring flow in the prior year (Table 3). The inter-
cept on r was positive and corresponded to an average growth rate
(when N is near zero) of exp(0.4) = 1.49 in MPVA1, with all covariates
at their mean values. The mean estimate of φ was 0.0015. This corre-
sponds to an average carrying capacity (K = r/φ) of 267 fish per km.

A plot of predicted vs. observed densities shows reasonable fit for all
models (Fig. 2), considering that trout populations have been shown to
undergo large, unpredictable fluctuations (Dauwalter et al., 2009;
Dochtermann and Peacock, 2010; Platts and Nelson, 1988), although
there was a general tendency to over-predict low-densities and under-
predict high densities. For MPVA1 mean absolute prediction error was
653 individuals, with a bias of −148 and a precision (expressed as a
mean 90% credible interval width) of 4620 individuals (Table 4). For
MPVA2 results were very similar, though precision was slightly worse.
The two simple models also had similar performance to MPVA, except
that precision was worse, especially for Simple1 (Table 4). It's im-
portant to note that the low bias of the simple models is expected, given
that each population is fitted individually. The advantage of MPVA
(particularly MPVA1) is that it achieves comparable bias with fewer
parameters, and furthermore can be used for prediction in additional
locations. However, predictions for Tierney and Three Mile Creeks from
Simple1 appeared unreliable due to very imprecise estimates of growth
rate that allowed populations to rise very high in population forecasts
before crashing to extinction.

The estimates of 100-yr extinction probabilities ranged from 7.5%
to 21.8% for MPVA1 and 2.7% to 52.9% for MPVA2 (Table 5). Ex-
tinction rates for Simple1 and Simple2 were much higher:
12.6%–85.1% for Simple1 and 34.4%–73.6% for Simple2 (Table 5).

Table 1
Population names, mean density (fish/km), and length (km) for 15 Lahontan cutthroat
trout populations.

Population name Years sampled (n) Mean density
(fish/km)

Length
(km)

East Marys River 1993 to 2001 (9) 155.7 5.90
West Marys River 1993 to 2002 (10) 170.6 6.00
Marys River Basin Cr 1993 to 2002 (10) 147.4 5.10
Frazer Cr 1993 to 2002 (10) 617.2 3.54
Gance Cr 1993 to 2002 (10) 245.2 8.55
Foreman Cr 1993 to 1999 (7) 376.3 5.93
Abel Cr 1996 to 2002 (7) 131.6 2.00
Indian Cr 1996 to 2002 (7) 323.4 1.77
Mohawk 1996 to 2001 (6) 245.7 4.70
NF Humboldt River 1996 to 2002 (7) 199.7 19.00
T Cr 1994 to 2002 (9) 251.0 9.98
Three Mile Cr 1996 to 2000 (5) 400.4 6.76
Tierney Cr 1993 to 2001 (6) 56.2 13.00
Toe Jam Cr 1996, 2002 (2) 156.3 17.13
Fourth Boulder Cr 2001 (1) 204.8 4.17

Table 2
Essential characteristics of the two MPVA models and the two “simple” models.

Model name Populations modeled jointly, with covariates? Density dependence? Residual stochasticity parameterization Number of parameters

MPVA1 Yes Yes Random effect by population 7a

MPVA2 Yes Yes Independent by population 18
Simple1 No Yes Independent by population 27
Simple2 No No Independent by population 14

a Three parameters represent random effects.
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Among MPVA1 results, the highest extinction risk was associated with
Abel Creek, which had both a low density and a small spatial extent; as
the smallest overall population, its relatively low viability makes sense.
In contrast, the Simple2 model gave Abel Creek the lowest extinction
probability of any of the populations, and Simple1 gave it an inter-
mediate extinction probability (Table 4). The reason for the difference
is that estimates of extinction risk from Simple1 and Simple2 are de-
termined by the observed growth rate and stochasticity in Abel Creek
alone, whereas MPVA1 projections assume that year-to-year variability
is partly explainable by covariates and remaining stochasticity is
treated as a random effect, with some influence from the overall mean
of the stochasticity across all populations. Since the short seven-year
data series for Abel Creek has low stochasticity and a slight upward
trend (Table A1, Supplementary Material), extinction risk is low in the
simple models (relative to other populations, not to MPVA estimates).
MPVA2, which explains some variability using covariates but which
estimates residual stochasticity for each population separately, is in-
termediate in behavior. Like Simple1 and Simple2, MPVA2 shows N.F.
Humboldt as having the highest extinction probabilities, as this popu-
lation has the highest stochasticity.

The higher extinction probabilities for Simple1 and Simple2 com-
pared to MPVA are in large part due to the higher uncertainties in these

model predictions. With these types of models, higher stochasticity in a
population forecast translates to higher extinction probability (Morris
and Doak, 2002). The extinction rate classes reported by Peacock and

Table 3
Means and 80% credible intervals of posterior parameter estimates from Lahontan cut-
throat trout MPVA models.

Variable MPVA1 MPVA2

10% Mean 90% 10% Mean 90%

B0 Intercept 0.12 0.40 0.67 0.14 0.46 0.77
B1 temperature −0.18 −0.02 0.13 −0.20 −0.06 0.008
B2 springlag 0.03 0.16 0.29 0.001 0.11 0.21
B3 spring −0.23 −0.09 0.05 −0.18 −0.07 0.004
Mean phi 0.0004 0.0015 0.0036 0.0006 0.0015 0.0041

Fig. 2. Predicted vs. observed densities for each population at each sampling event under MPVA and the Simple1 and Simple2 models. Circles show medians; lines show 95% credible
intervals. The diagonal line is the 1:1 line. The extent of the Y axis is defined by MPVA1; the upper ends of some intervals are truncated for the other three models.

Table 4
Mean absolute prediction error, bias, and precision for the MPVA and “simple” models.
Numbers are in units of fish of age 1+.

Model Mean absolute prediction
error

Bias Precision (mean 90% credible
interval)

MPVA1 653 −148 4620
MPVA2 646 −136 5390
Simple1 626 −196 18,707
Simple2 775 −32 12,900

Table 5
100-Year extinction probabilities of Lahontan cutthroat trout populations from MPVA1,
MPVA2, Simple1, Simple2, and Peacock and Dochtermann (2012).

Population name MPVA1 MPVA2 Simple1 Simple2 P & D Extinct.

East Marys River 14.1 30.1 55.6 48.5 Low
West Marys River 11.5 17.1 28.8 39.9 Low
Marys River Basin Cr 17.5 35.5 64.7 58.6 Mod
Frazer 16.4 14.1 12.6 45.5 Mod
Gance 14.0 23.1 45.1 50.5 Mod
Foreman 7.5 3.5 16.3 57.8 Mod
Abel 21.8 12.0 23.9 34.4 Low
Indian 13.2 11.9 37.8 62.3 High
Mohawk 9.0 2.7 14.9 40.0 Low
NF Humboldt 20.4 52.9 85.1 87.1 High
T Creek 9.0 4.4 14.1 70.3 High
Three Mile 13.5 14.1 * 66.6 High
Tierney 11.8 20.5 * 73.6 High
Toe Jam 19.1 21.4 – – –
Fourth Boulder 20.2 22.9 – – –

*Estimates are unreliable; see text.
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Dochtermann (2012) are broadly consistent with those of the Simple2
model. Since Peacock and Dochtermann set a quasi-extinction threshold
of 50, as a test we reran Simple2 with an equivalent threshold. We then
found that our results exactly matched those that they reported, which
is expected since Peacock and Dochtermann used a density-independent
exponential growth model (Morris and Doak, 2002) that is equivalent
to Simple2. One problem with such a model is that its population
predictions are unbounded by carrying capacity; as a result some of our
forecasts from Simple2 rose to unrealistically high numbers. Morris and
Doak (2002) point out that violations of the model's assumption of
density independence can render its results “extremely inaccurate.”

5. Discussion

We have introduced an approach for assessing the viability of
multiple populations that has several advantages over existing PVA
methods. First, this approach borrows information from other popula-
tions, and as such allows estimation of viability for populations with
insufficient data for conventional PVA. Accordingly, MPVA can even
make predictions for populations with few to no observations. Second,
as a statistical modeling approach, it is inherently empirical; biological
expertise is needed to determine model structure and reasonable cov-
ariates, but MPVA does not depend on parameters set from the litera-
ture or expert opinion. Third, it allows proper accounting of un-
certainty, although to take advantage of this fully the process model
should be coupled to an observation and sampling model. We return to
this shortly.

The use of covariates opens the door to numerous practical appli-
cations. If climate-related variables are used as covariates, it is possible
to use outputs from general circulation models to generate projections
of viability under future climate conditions. The covariate parameter
estimates from the fitted model provides an empirical basis for the
climate effect, without the need for additional assumptions about the
climate-organism response (except for the assumption that the climate-
organism response remains within the bounds of existing observations).
Similarly, if habitat-related variables are used as covariates, it is pos-
sible to test the benefits of restoration or management actions that alter
these habitat conditions. Finally, modeling invasive species presence or
density as a covariate can allow exploration of the influence of this
factor and the benefits of invasive species control. In all these cases,
however, it is necessary to have populations that span a gradient of the
predictor variable of interest in order to estimate the associated para-
meters. If all of the extant populations are in a narrow climatic band, it
may not be possible to estimate a temperature effect (in fact, this is
likely the reason for the lack of effect in our example). Similarly, to
estimate the effect of an invasive species the distribution of its densities
should have good representation across a broad range. Locations where
the focal species has gone extinct as a result of the invasion will strongly
inform parameter estimates. Consideration of statistical representation
of populations is therefore critical.

A potential downside to MPVA is that a sudden downward trend in a
monitored population that might indicate a risk to persistence will not
necessarily translate to a substantial decline in predicted viability for
that population, especially if it is due to a factor that is not included as a
model covariate. Because MPVA borrows information from other po-
pulations, any one data point has reduced leverage compared to a
simple single-population model. Accordingly, when there is particular
interest in individual populations that are the subject of long-term
monitoring, it is reasonable to fit both MPVA and single-population
models, using outputs of both in evaluating risk. In our example, MPVA
ranked Tierney Creek as having a low extinction risk, whereas the
simple models assigned it a high risk due to a marked localized decline.
In reality this population went extinct, likely due to invasive brook
trout Salvelinus fontinalis, a factor not included in our MPVA model.

Ideally, the MPVA process model should be linked with an ob-
servation and sampling model to allow for full accounting of

uncertainty. Berliner (1996) described hierarchical Bayesian time-series
models that included a model of the data generating process (e.g. fish
surveys) plus a model of the underlying process of interest (e.g. fish
population dynamics). Following Hobbs and Hooten (2015), the data
model can be further subdivided into an observation model and a
sampling model. The observation model estimates detection probability
and the underlying true abundance at a site or plot, while the sampling
model scales multiple abundance estimates to the full region of in-
ference (in this case, a defined population). The three models can be
linked in a hierarchical fashion: the observation model yields an esti-
mate of site-scale abundance, which feeds into the sampling model of
population-scale abundance, which in turn feeds into the process model
that estimates inter-annual changes in populations. In our example, our
dataset was based on an external observation model (Zippin), extra-
polated to the full sample extent. We treated the resulting estimate of
abundance as if it had been known precisely. Thus, uncertainty from the
first two levels was ignored. The alternative is to code an internal multi-
pass estimator as the observation model, link this to a sampling model
that assumes the reaches sampled are representative of the overall
population extent, and use the estimates of latent total abundance in
each year to fit the process model. This hierarchical approach allows for
realistic propagation of all sources of uncertainty into estimates of
persistence, and more realistic estimates of extinction probability. We
have created several versions of such a model, but the code and model
behavior is complex and well beyond the scope of this article, which
aims to present the core process model with sufficient detail. The full
model is the subject of a manuscript in preparation.

Any version of MPVA will be data demanding (though much less so
than conventional PVA applied to numerous populations), both in terms
of in-situ species observations and covariates to explain differences in
those species observations among populations and years. A couple of
decades ago, these models would have been of theoretical interest only,
but we are optimistic that the required data are now available for many
taxa of interest. First, there is an increasingly diverse and accessible
array of remotely sensed data products from NASA and other providers
that can serve as useful covariates across broad study domains
(Dauwalter et al., 2017). These in turn have been used to develop nu-
merous secondary and tertiary data products, such as the NorWeST
stream temperature dataset used in our example. Second, there is a
largely untapped resource out there for biotic data, at least within the
US: state agency data collections. The Nevada Department of Wildlife
alone has over 5000 records of collections targeting Lahontan cutthroat
trout since the early 1980s. Other states have comparable or larger
datasets for other species of interest.

Existing sampling regimes are generally not optimized for gen-
erating data for MPVA analysis, however. MPVA is autoregressive, and
at least some populations need to be sampled in sequential years in
order to fit a model. Many agencies use rotating panel designs, visiting a
site every five years or so (Larsen et al., 2001; Urquhart et al., 1998).
While there are advantages to such an approach, the lack of data for
back-to-back years may make it difficult to estimate model parameters.
We are currently conducting simulation studies to determine how im-
portant such data are, and the tradeoffs of different types of sampling
designs in terms of identifying covariate effects and in predicting via-
bility using MPVA models.

We presented MPVA as a blend of spatial distribution/abundance
models and temporal population dynamics models that are empirical
statistical approaches. In contrast, conservation prioritization has his-
torically relied on non-empirical methods to support decision-making in
data-deficient locations. These span a gradient of complexity. One end
of the spectrum is occupied by spatial ranking methods that rely on
indirect indicators of population status and habitat quality (O'Grady
et al., 2004), such as Trout Unlimited's Conservation Success Index
(Williams et al., 2007). The scores used in such indices are often derived
from the same types of variables that serve as covariates in an MPVA or
species distribution model, but they are usually parameterized by a mix
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of expert opinion and past study results. At the other end of the model
complexity spectrum are spatially-explicit population simulation pro-
grams such as RAMAS-Metapop (Akçakaya and Root, 2002), CDMe-
taPOP (Landguth et al., 2017), and Hexsim (Schumaker, 2011). These
are also non-empirical, which is both their strength and weakness: they
can provide estimates of viability in the absence of data, but those es-
timates can vary greatly depending on how the user chooses to set
parameters (and such models may have many, many parameters).
MPVA is similar in that it estimates extinction risk, but these estimates
are based on empirical data.

We are beginning to explore variations on MPVA. Age- or stage-
structured MPVA models are a natural extension, and for species with
appropriate datasets such models may offer dramatic improvements
over the simple form presented here. Connected populations are an-
other obvious extension, but estimating movement among populations
represents a major challenge. Highly connected populations may also
be of lower interest because viability will tend to be much higher than
for isolated populations, and for classical metapopulations with ex-
tinction-colonization dynamics existing methods such as the incidence
function method (Hanski, 1994) may be more practical. It may be
useful to incorporate catastrophes into an MPVA, particularly where
there is the possibility for linking to models of catastrophe risk. How-
ever, since most catastrophes are stochastic and uncommon, it may be
difficult to estimate their effects from empirical data alone (Mangel and
Tier, 1994). Hybrid empirical/simulation models may be required. Fi-
nally, spatial error structure could be a valuable addition to future
MPVA models, especially for populations that are clustered. This would
move MPVA into the realm of dynamical spatio-temporal models
(Cressie and Wikle, 2011). In our MPVA example, we used spatio-
temporal covariates to account for spatial autocorrelation induced by
key environmental drivers, but we did not account for residual spatial
autocorrelation. This was largely to keep the models simple, as aniso-
tropic (directional) covariance functions based on stream distance and
flow direction introduce significant model complexity (Ver Hoef et al.,
2006).

6. Implications for Lahontan cutthroat trout

Our purpose here was to use the Lahontan cutthroat trout dataset as
an illustration, not to make conservation recommendations, but we
nevertheless provide some context for our results. Of the covariates we
tested, we found a positive effect of high flows in the preceding year,
suggesting that these flows increase survival and recruitment to the
adult stage (our data excluded young-of-year), possibly by stimulating
increased productivity. We found no effect of temperature among the
populations we examined, perhaps because they do not span a sufficient
gradient. We found that 100-year extinction rates from MPVA were
much lower than those produced by the simple models, which represent
traditional PVA approaches. We also found substantial differences in
the rank ordering of extinction risk, although all models agreed that the
North Fork Humboldt population was at high risk. We caution that this
is a small dataset, and we are in the process of conducting an analysis
on a much larger dataset, the results of which will be reported sepa-
rately. However, our preliminary findings are enough to suggest that
managers should be cautious in relying too heavily on traditional PVA
methods in the management of Lahontan cutthroat trout, or other si-
milar species. In fact, a population-specific prediction from a PVA of
any kind (including MPVA) would benefit from an interpretation by
experienced field biologists with knowledge of the system, and should
be considered in the context of other available information.

7. Conclusions

Morris and Doak (2002) suggested that a first rule to using PVA is to
let the available data guide the type of PVA to perform. Historically,
assessing the viability of data-deficient populations necessitated the use

of approaches that required literature values or expert opinion. Here we
show that MPVA presents a data-driven alternative that can provide
reasonable viability estimates for poorly-sampled populations, as long
as there are sufficient data from other populations to estimate covariate
effects. We argue that the resulting estimates of viability are an ap-
propriate basis for decisions on the allocation of scarce resources for
imperiled species that occur in multiple isolated populations.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.biocon.2017.10.006.
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